Learning the Neighborhood with the Linkage Tree Genetic Algorithm
نویسندگان
چکیده
We discuss the use of online learning of the local search neighborhood. Specifically, we consider the Linkage Tree Genetic Algorithm (LTGA), a population-based, stochastic local search algorithm that learns the neighborhood by identifying the problem variables that have a high mutual information in a population of good solutions. The LTGA builds each generation a linkage tree using a hierarchical clustering algorithm. This bottom-up hierarchical clustering is computationally very efficient and runs in O(n). Each node in the tree represents a specific cluster of problem variables. When generating new solutions, these linked variables specify the neighborhood where the LTGA searches for better solutions by sampling values for these problem variables from the current population. To demonstrate the use of learning the neighborhood we experimentally compare iterated local search (ILS) with the LTGA on a hard discrete problem, the nearest-neighbor NK-landscape problem with maximal overlap. Results show that the LTGA is significantly superior to the ILS, proving that learning the neighborhood during the search can lead to a considerable gain in search performance.
منابع مشابه
Ensemble of M5 Model Tree Based Modelling of Sodium Adsorption Ratio
This work reports the results of four ensemble approaches with the M5 model tree as the base regression model to anticipate Sodium Adsorption Ratio (SAR). Ensemble methods that combine the output of multiple regression models have been found to be more accurate than any of the individual models making up the ensemble. In this study additive boosting, bagging, rotation forest and random subspace...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملA Mixed Integer Programming Approach to Optimal Feeder Routing for Tree-Based Distribution System: A Case Study
A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as m...
متن کامل